Generating Tuples of Integers modulo the Action of a Permutation Group and Applications
نویسنده
چکیده
Originally motivated by algebraic invariant theory, we present an algorithm to enumerate integer vectors modulo the action of a permutation group. This problem generalizes the generation of unlabeled graph up to an isomorphism. In this paper, we present the full development of a generation engine by describing the related theory, establishing a mathematical and practical complexity, and exposing some benchmarks. We next show two applications to effective invariant theory and effective Galois theory. Initialement motivé par la théorie algébrique des invariants, nous présentons une stratégie algorithmique pour énumérer les vecteurs d’entiers modulo l’action d’un groupe de permutations. Ce problème généralise le problème d’énumération des graphes non étiquetés. Dans cet article, nous développons un moteur complet d’énumération en expliquant la théorie sous-jacente, nous établissons des bornes de complexité pratiques et théoriques et exposons quelques bancs d’essais. Nous détaillons ensuite deux applications théoriques en théorie effective des invariants et en théorie de Galois effective. Generation up to an Isomorphism, Enumerative Combinatorics, Computational Invariant Theory, Effective Galois Theory
منابع مشابه
Calculations of Dihedral Groups Using Circular Indexation
In this work, a regular polygon with $n$ sides is described by a periodic (circular) sequence with period $n$. Each element of the sequence represents a vertex of the polygon. Each symmetry of the polygon is the rotation of the polygon around the center-point and/or flipping around a symmetry axis. Here each symmetry is considered as a system that takes an input circular sequence and g...
متن کاملThe remoteness of the permutation code of the group $U_{6n}$
Recently, a new parameter of a code, referred to as the remoteness, has been introduced.This parameter can be viewed as a dual to the covering radius. It is exactly determined for the cyclic and dihedral groups. In this paper, we consider the group $U_{6n}$ as a subgroup of $S_{2n+3}$ and obtain its remoteness. We show that the remoteness of the permutation code $U_{6n}$ is $2n+2$. Moreover, ...
متن کاملDefining sets of extended cyclic codes invariant under the affine group
We describe the defining sets of extended cyclic codes of length pn over a field and over the ring of integers modulo pe admitting the affine group AGLm(p ), n=mt , as a permutation group. © 2004 Elsevier B.V. All rights reserved. MSC: 94B05; 20B25; 94B15; 94B60
متن کامل$Z_k$-Magic Labeling of Some Families of Graphs
For any non-trivial abelian group A under addition a graph $G$ is said to be $A$-textit{magic} if there exists a labeling $f:E(G) rightarrow A-{0}$ such that, the vertex labeling $f^+$ defined as $f^+(v) = sum f(uv)$ taken over all edges $uv$ incident at $v$ is a constant. An $A$-textit{magic} graph $G$ is said to be $Z_k$-magic graph if the group $A$ is $Z_k$ the group of integers modulo $k...
متن کاملLattice Point Generating Functions and Symmetric Cones
Abstract. We show that a recent identity of Beck–Gessel–Lee–Savage on the generating function of symmetrically contrained compositions of integers generalizes naturally to a family of convex polyhedral cones that are invariant under the action of a finite reflection group. We obtain general expressions for the multivariate generating functions of such cones, and work out their general form more...
متن کامل